

KNX T-UP gl

Temperatursensor

Artikelnummern 70631 (Schwarz), 70632 (Reinweiß)

Installation und Einstellung

1.	Beschreibung	. 3
	1.0.1. Lieferumfang	3
1.1.	Technische Daten	. 4
	1.1.1. Genauigkeit der Messung	4
2.	Installation und Inbetriebnahme	. 5
2.1.	Hinweise zur Installation	
2.2.	Montageort	5
2.3.	Aufbau des Geräts	7
	2.3.1. Gehäuse	7
2.4.	Montage des Sensors	7
2.5.	Hinweise zur Montage und Inbetriebnahme	7
3.	Übertragungsprotokoll	. 8
3.1.	Liste aller Kommunikationsobjekte	
4.	Einstellung der Parameter	14
4.1.	Verhalten bei Spannungsausfall/-wiederkehr	
	Allgemeine Einstellungen	
4.3.	Temperatur Messwert	14
4.4.	Temperatur Grenzwerte	15
	4.4.1. Grenzwert 1, 2, 3	15
	4.4.1.1. Grenzwert	15
	4.4.1.2. Schaltausgang	16
	4.4.1.3. Sperre	17
4.5.	Temperatur-PI-Regelung	17
	4.5.0.1. Regelung Allgemein	18
	4.5.0.2. Sollwert Allgemein	
	4.5.0.3. Sollwert Komfort	
	4.5.0.4. Sollwert Standby	21
	4.5.0.5. Sollwert Eco	21
	4.5.0.6. Sollwerte Frost-/Hitzeschutz (Gebäudeschutz)	
	4.5.0.7. Stellgrößen Allgemein	
	4.5.1. Heizregelung Stufe 1/2	
	4.5.2. Kühlregelung Stufe 1/2	
4.6.	Stellgrößenvergleicher	
	4.6.1. Stellgrößenvergleicher 1/2	
4.7.	Logik	
	4.7.0.1. UND Logik	
	4.7.0.2. ODER Logik	
	4.7.1. UND Logik 1-4 und ODER Logik 1-4	
	4.7.1.1. Sperrung	30
	4.7.2. Verknüpfungseingänge der UND Logik	
	4.7.3. Verknüpfungseingänge der ODER Logik	31

Installation, Prüfung, Inbetriebnahme und Fehlerbehebung des Geräts dürfen nur von einer Elektrofachkraft (lt. VDE 0100) durchgeführt werden.

Dieses Handbuch unterliegt Änderungen und wird an neuere Software-Versionen angepasst. Den Änderungsstand (Software-Version und Datum) finden Sie in der Fußzeile des Inhaltsverzeichnis.

Wenn Sie ein Gerät mit einer neueren Software-Version haben, schauen Sie bitte auf **www.elsner-elektronik.de** im Menübereich "Service", ob eine aktuellere Handbuch-Version verfügbar ist.

Zeichenerklärungen für dieses Handbuch

	Λ	
_/	Λ	١.
/	:	1

Sicherheitshinweis

Sicherheitshinweis für das Arbeiten an elektrischen Anschlüssen, Bauteilen etc.

GEFAHR!

... weist auf eine unmittelbar gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden

wird

WARNUNG!

... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

VORSICHT!

... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen führen kann, wenn sie nicht gemieden wird.

ACHTUNG!

... weist auf eine Situation hin, die zu Sachschäden führen kann, wenn sie nicht gemieden wird.

ETS

In den ETS-Tabellen sind die Voreinstellungen der Parameter durch eine Unterstreichung gekennzeichnet.

1. Beschreibung

Der **Temperatursensor KNX T-UP gl** misst die Raumtemperatur. Über den Bus kann der Innenraumsensor einen externen Messwert empfangen und mit den eigenen Daten zu einer Gesamttemperatur (Mischwert) weiterverarbeiten.

Der KNX T-UP gl hat einstellbare Grenzwerte. Die Grenzwert-Ausgänge und weitere Kommunikationsobjekte können über UND- und ODER-Logik-Gatter verknüpft werden. Zusätzlich kann ein integrierter Stellgrößenvergleicher Werte, die über Kommunikationsobjekte empfangen wurden, vergleichen und ausgegeben. Der Sensor hat PI-Regler für eine Heizung und eine Kühlung.

Das Gehäuse wird mit einem Rahmen der im Gebäude verwendeten Schalterreihe ergänzt und passt sich so nahtlos in die Innenausstattung ein.

Funktionen:

- Messung der Temperatur
- Mischwert aus eigenem Messwert und externen Werten (Anteil prozentual einstellbar)
- PI-Regler für Heizung (ein- oder zweistufig) und Kühlung (ein- oder zweistufig) nach Temperatur. Regelung nach separaten Sollwerten oder Basissolltemperatur
- Grenzwerte einstellbar per Parameter oder über Kommunikationsobjekte: 3 x Temperatur
- 4 UND- und 4 ODER-Logik-Gatter mit je 4 Eingängen. Als Eingänge für die Logik-Gatter können sämtliche Schalt-Ereignisse sowie 16 Logikeingänge in Form von Kommunikationsobjekten genutzt werden. Der Ausgang jedes Gatters kann wahlweise als 1 Bit oder 2 x 8 Bit konfiguriert werden
- 2 Stellgrößenvergleicher zur Ausgabe von Minimal-, Maximal- oder Durchschnittswerten. Jeweils 5 Eingänge für über Kommunikationsobjekte empfangene Werte

Die Konfiguration erfolgt mit der KNX-Software ETS 5. Die **Produktdatei** steht im ETS-Online-Katalog und auf der Homepage von Elsner Elektronik unter **www.elsner-elektronik.de** im Menübereich "Service" zum Download bereit.

1.0.1. Lieferumfang

- Gehäuse mit Display
- Trägerplatte

Sie benötigen zusätzlich (nicht im Lieferumfang enthalten):

- Gerätedose Ø 60 mm, 42 mm tief
- Rahmen (für Einsatz 55 x 55 mm), passend zum im Gebäude verwendeten Schalterprogramm

1.1. Technische Daten

Gehäuse	ABS Kunststoff
Farben	
Montage	Unterputz (Wandeinbau in Gerätedose Ø 60 mm, 42 mm tief bzw. Hohlwanddose für Fräsloch Ø 68 mm)
Schutzart	IP 20
Maße	Gehäuse ca. 55 x 55 (B x H, mm), Aufbautiefe ca. 8 mm, Trägerplatte ca. 71 x 71 (B x H, mm)
Gesamtgewicht	ca. 50 g
Umgebungstemperatur	Betrieb 0+50°C, Lagerung -10+60°C
Umgebungsluftfeuchtigkeit	max. 95% rF, Betauung vermeiden
Betriebsspannung	KNX-Busspannung
Busstrom	max. 10 mA
Datenausgabe	KNX +/- Bussteckklemme
BCU-Typ	eigener Mikrocontroller
PEI-Typ	0
Gruppenadressen	max. 254
Zuordnungen	max. 254
Kommunikationsobjekte	152
Temperatur-Messbereich	0+50°C
Temperatur Auflösung	0,1°C
Temperatur Genauigkeit	± 0,5°C bei 0+50°C (Beachten Sie die Hinweise zur <i>Genauigkeit der Messung</i>)

Das Produkt ist konform mit den Bestimmungen der EU-Richtlinien.

1.1.1. Genauigkeit der Messung

Messwertabweichungen durch dauerhaft vorhandene Störquellen (siehe Kapitel *Montageort*) können in der ETS korrigiert werden, um die angegebene Genauigkeit des Sensors zu erreichen (Offset).

Bei der **Temperaturmessung** wird die Eigenerwärmung des Gerätes durch die Elektronik berücksichtigt. Sie wird von der Software kompensiert.

2. Installation und Inbetriebnahme

2.1. Hinweise zur Installation

Installation, Prüfung, Inbetriebnahme und Fehlerbehebung des Geräts dürfen nur von einer Elektrofachkraft (lt. VDE 0100) durchgeführt werden.

VORSICHT!

Elektrische Spannung!

Im Innern des Geräts befinden sich ungeschützte spannungsführende Bauteile.

- Die VDE-Bestimmungen beachten.
- Alle zu montierenden Leitungen spannungslos schalten und Sicherheitsvorkehrungen gegen unbeabsichtigtes Einschalten treffen
- Das Gerät bei Beschädigung nicht in Betrieb nehmen.
- Das Gerät bzw. die Anlage außer Betrieb nehmen und gegen unbeabsichtigten Betrieb sichern, wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr gewährleistet ist.

Das Gerät ist ausschließlich für den sachgemäßen Gebrauch bestimmt. Bei jeder unsachgemäßen Änderung oder Nichtbeachten der Bedienungsanleitung erlischt jeglicher Gewährleistungs- oder Garantieanspruch.

Nach dem Auspacken ist das Gerät unverzüglich auf eventuelle mechanische Beschädigungen zu untersuchen. Wenn ein Transportschaden vorliegt, ist unverzüglich der Lieferant davon in Kenntnis zu setzen.

Das Gerät darf nur als ortsfeste Installation betrieben werden, das heißt nur in montiertem Zustand und nach Abschluss aller Installations- und Inbetriebnahmearbeiten und nur im dafür vorgesehenen Umfeld.

Für Änderungen der Normen und Standards nach Erscheinen der Bedienungsanleitung ist Elsner Elektronik nicht haftbar.

2.2. Montageort

Der **Temperatursensor KNX T-UP gl** ist für die Wandmontage in einer Gerätedose (Ø 60 mm, 42 mm tief) konzipiert.

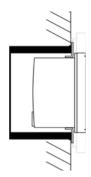


Abb. 1: Schnittzeichnung.

Der **Temperatursensor KNX T-UP gl** passt in eine Standard-Gerätedose (Ø 60 mm, Tiefe 42 mm).

Der Rahmen ist nicht im Lieferumfang enthalten!

Nur in trockenen Innenräumen installieren und betreiben. Betauung vermeiden.

Achten Sie bei der Wahl des Montageorts bitte darauf, dass die Messergebnisse möglichst wenig von äußeren Einflüssen verfälscht werden. Mögliche Störquellen sind:

- Direkte Sonnenbestrahlung
- Zugluft von Fenstern oder Türen
- Zugluft aus Rohren, die von anderen Räumen oder dem Außenbereich in die Dose führen, in der Sensor montiert ist
- Erwärmung oder Abkühlung des Baukörpers, an dem der Sensor montiert ist,
 z. B. durch Sonneneinstrahlung, Heizungs- oder Kaltwasserrohre
- Anschlussleitungen und Leerrohre, die aus einem kälteren oder wärmeren Bereich zum Sensor führen

Messwertabweichungen durch dauerhaft vorhandene Störquellen können in der ETS korrigiert werden, um die angegebene Genauigkeit des Sensors zu erreichen (Offset).

2.3. Aufbau des Geräts

2.3.1. Gehäuse

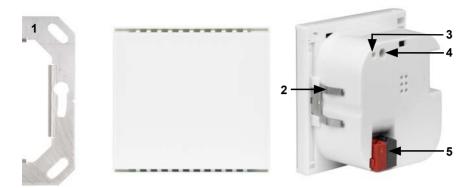


Abb. 2

- 1 Tragrahmen
- 2 Rasten
- 3 Programmier-LED (versenkt)
- 4 Programmier-Taste (versenkt) zum Einlernen des Geräts
- 5 KNX-Klemme BUS +/-

2.4. Montage des Sensors

Montieren Sie zunächst die winddichte Dose mit Zuleitung. Dichten Sie auch die Zuleitungsrohre ab, um Zugluft zu vermeiden.

Verschrauben Sie dann die Trägerplatte auf der Dose und legen Sie den Rahmen des Schalterprogramms auf. Schließen Sie die Busleitung +/- am Stecker (schwarz-rot) an. Stecken Sie das Gehäuse mit den Rasten fest auf den Metallrahmen, so dass Gerät und Rahmen fixiert sind.

2.5. Hinweise zur Montage und Inbetriebnahme

Setzen Sie das Gerät niemals Wasser (Regen) oder Staub aus. Die Elektronik kann hierdurch beschädigt werden. Eine relative Luftfeuchtigkeit von 95% darf nicht überschritten werden. Betauung vermeiden.

Nach dem Anlegen der Busspannung befindet sich das Gerät einige Sekunden lang in der Initialisierungsphase. In dieser Zeit kann keine Information über den Bus empfangen oder gesendet werden.

3. Übertragungsprotokoll

Einheiten:

Temperaturen in Grad Celsius Luftfeuchtigkeit in % Absolute Luftfeuchtigkeit in g/kg bzw. g/m³ Stellgrößen in %

3.1. Liste aller Kommunikationsobjekte

Abkürzungen Flags:

- K Kommunikation
- L Lesen
- S Schreiben
- Ü Übertragen
- A Aktualisieren

Nr	Text	Funktion	Flags	DPT Typ	Größe
0	Softwareversion	auslesbar	L-KÜ	[217.1] DPT_Version	2 Bytes
1	Temperatursensor Störung	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
3	Externer Temperaturmesswert	Eingang	-SK-	[9.1] DPT_Value_Temp	2 Bytes
4	Interner Temperaturmesswert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
5	Gesamt-Temperaturmesswert	Ausgang	L-KÜ	[9.1] D PT_Value_Temp	2 Bytes
6	Anforderung min./max. Temperaturmesswert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
7	Minimaler Temperaturmesswert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
8	Maximaler Temperaturmesswert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
9	Reset min./max. Temperatur- messwert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
10	Temp. Grenzwert 1: Absolutwert	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
11	Temp. Grenzwert 1: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
12	Temp. Grenzwert 1: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
13	Temp. Grenzwert 1: Schaltverzö- gerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
14	Temp. Grenzwert 1: Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit

Nr	Text	Funktion	Flags	DPT Тур	Größe
15	Temp. Grenzwert 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
16	Temp. Grenzwert 2: Absolutwert	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
17	Temp. Grenzwert 2: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
18	Temp. Grenzwert 2: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
19	Temp. Grenzwert 2: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
20	Temp. Grenzwert 2: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
21	Temp. Grenzwert 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
22	Temp. Grenzwert 3: Absolutwert	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
23	Temp. Grenzwert 3: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
24	Temp. Grenzwert 3: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
25	Temp. Grenzwert 3: Schaltverzö- gerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
26	Temp. Grenzwert 3: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
27	Temp. Grenzwert 3: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
29	Temp.Regler: HVAC Modus (Priorität 1)	Eingang	-SK-	[20.102] DPT_HVACMode	1 Byte
30	Temp.Regler: HVAC Modus (Priorität 2)	Eingang / Ausgang	LSKÜ	[20.102] DPT_HVACMode	1 Byte
31	Temp.Regler: Modus Frost-/Hitze- schutz Aktivierung	Eingang / Ausgang	LSKÜ	[1.1] DPT_Switch	1 Bit
32	Temp.Regler: Sperre (aktiv bei Wert = 1)	Eingang	-SK-	[1.1] PT_Switch	1 Bit
33	Temp.Regler: Sollwert Aktuell	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
34	Temp.Regler: Umschaltung (Heizen = 0 Kühlen = 1)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
35	Temp.Regler: Sollwert Komfort Heizung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
36	Temp.Regler: Sollwert Komfort Heizung (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
37	Temp.Regler: Sollwert Komfort Kühlung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes

Nr	Text	Funktion	Flags	DPT Typ	Größe
38	Temp.Regler: Sollwert Komfort Kühlung (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
39	Temp.Regler: Basissollwertver- schiebung 16 Bit	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
40	Temp.Regler: Sollwert Standby Heizung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
41	Temp.Regler: Sollwert Standby Heizung (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
42	Temp.Regler: Sollwert Standby Kühlung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
43	Temp.Regler: Sollwert Standby Kühlung (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
44	Temp.Regler: Sollwert Eco Heizung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
45	Temp.Regler: Sollwert Eco Heizung (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
46	Temp.Regler: Sollwert Eco Kühlung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
47	Temp.Regler: Sollwert Eco Kühlung (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
48	Temp.Regler: Stellgröße Heizung (1. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
49	Temp.Regler: Stellgröße Heizung (2. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
50	Temp.Regler: Stellgröße Kühlung (1. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
51	Temp.Regler: Stellgröße Kühlung (2. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
52	Temp.Regler: Status Heizung Stufe 1 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
53	Temp.Regler: Status Heizung Stufe 2 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
54	Temp.Regler: Status Kühlung Stufe 1 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
55	Temp.Regler: Status Kühlung Stufe 2 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
56	Temp.Regler: Komfort Verlänge- rungsstatus	Eingang / Ausgang	LSKÜ	[1.1] DPT_Switch	1 Bit
57	Temp.Regler: Komfort Verlänge- rungszeit	Eingang	LSKÜ	[7.5] DPT_TimePeriodSec	2 Bytes
58	Temp.Regler: Stellgröße für 4/6 Wegeventil	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
131	CO2 Regler: Stellgröße Belüftung (1. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte

Nr	Text	Funktion	Flags	DPT Typ	Größe
133	CO2 Regler: Status Belüftung (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
134	CO2 Regler: Status Belüftung 2 (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
135	Stellgrößenvergleicher 1: Eingang 1	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
136	Stellgrößenvergleicher 1: Eingang 2	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
137	Stellgrößenvergleicher 1: Eingang 3	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
138	Stellgrößenvergleicher 1: Eingang 4	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
139	Stellgrößenvergleicher 1: Eingang 5	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
140	Stellgrößenvergleicher 1: Ausgang	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
141	Stellgrößenvergleicher 1: Sperre	Ausgang	-SK-	[1.2] DPT_Bool	1 Bit
142	Stellgrößenvergleicher 2: Eingang 1	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
143	Stellgrößenvergleicher 2: Eingang 2	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
144	Stellgrößenvergleicher 2: Eingang 3	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
145	Stellgrößenvergleicher 2: Eingang 4	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
146	Stellgrößenvergleicher 2: Eingang 5	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
147	Stellgrößenvergleicher 2: Ausgang	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
148	Stellgrößenvergleicher 2: Sperre	Ausgang	-SK-	[1.2] DPT_Bool	1 Bit
149	UND Logik 1: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
150	UND Logik 1: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
151	UND Logik 1: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
152	UND Logik 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
153	UND Logik 2: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
154	UND Logik 2: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte

Nr	Text	Funktion	Flags	DPT Typ	Größe
155	UND Logik 2: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
156	UND Logik 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
157	UND Logik 3: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
158	UND Logik 3: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
159	UND Logik 3: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
160	UND Logik 3: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
161	UND Logik 4: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
162	UND Logik 4: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
163	UND Logik 4: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
164	UND Logik 4: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
181	ODER Logik 1: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
182	ODER Logik 1: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
183	ODER Logik 1: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
184	ODER Logik 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
185	ODER Logik 2: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
186	ODER Logik 2: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
187	ODER Logik 2: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
188	ODER Logik 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
189	ODER Logik 3: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
190	ODER Logik 3: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
191	ODER Logik 3: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
192	ODER Logik 3: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit

Nr	Text	Funktion	Flags	DPT Typ	Größe
193	ODER Logik 4: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
194	ODER Logik 4: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
195	ODER Logik 4: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
196	ODER Logik 4: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
200	Logikeingang 1	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
201	Logikeingang 2	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
202	Logikeingang 3	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
203	Logikeingang 4	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
204	Logikeingang 5	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
205	Logikeingang 6	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
206	Logikeingang 7	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
207	Logikeingang 8	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
208	Logikeingang 9	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
209	Logikeingang 10	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
210	Logikeingang 11	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
211	Logikeingang 12	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
212	Logikeingang 13	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
213	Logikeingang 14	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
214	Logikeingang 15	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
215	Logikeingang 16	Eingang	-SK-	[1.2] DPT_Bool	1 Bit

4. Einstellung der Parameter

4.1. Verhalten bei Spannungsausfall/-wiederkehr

Verhalten bei Busspannungsausfall:

Das Gerät sendet nichts.

Verhalten bei Busspannungswiederkehr und nach Programmierung oder Reset:

Das Gerät sendet alle Ausgänge entsprechend ihres in den Parametern eingestellten Sendeverhaltens mit den Verzögerungen, die im Parameterblock "Allgemeine Einstellungen" festgelegt werden.

4.2. Allgemeine Einstellungen

Stellen Sie grundlegende Eigenschaften der Datenübertragung ein.

Sendeverzögerung nach Power-Up und Programmierung für:		
Messwerte	<u>5 s</u> • • 2 h	
Grenzwerte und Schaltausgänge	<u>5 s</u> • • 2 h	
Regler-Objekte	<u>5 s</u> • • 2 h	
Logikausgänge	<u>5 s</u> • • 2 h	
Maximale Telegrammrate	• 1 Telegramm pro Sekunde	
	•	
	• 5 Telegramme pro Sekunde	
	•	
	• 20 Telegramme pro Sekunde	
Störobjekt Temperatur verwenden	<u>Nein</u> • Ja	

4.3. Temperatur Messwert

Mithilfe des Offsets können Sie den zu sendenden Messwert justieren.

Offset in 0,1°C	-5050; <u>0</u>
-----------------	-----------------

Das Gerät kann aus dem eigenem Messwert und einem externen Wert einen **Mischwert** berechnen. Stellen Sie falls gewünscht die Mischwertberechnung ein. Wird ein externer Anteil verwendet, beziehen sich alle folgenden Einstellungen (Grenzwerte etc.) auf den Gesamtmesswert.

Externen Messwert verwenden	Nein • Ja
Ext. Messwertanteil am Gesamtmesswert	5% • 10% • • <u>50%</u> • • 100%
Alle folgenden Einstellungen beziehen sich auf den Gesamtmesswert	

Interner und Gesamtmesswert senden	nicht zyklisch bei Änderung bei Änderung und zyklisch
Ab Änderung von (wenn bei Änderung gesendet wird)	<u>0,1°C</u> • 0,2°C • 0,5°C • • 5,0°C
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • • 2 h

Der **minimale und maximale Messwert** kann gespeichert und auf den Bus gesendet werden. Mit den Objekten "Reset Temperatur Min/Maximalwert" können die Werte auf die aktuellen Messwerte zurückgesetzt werden. Die Werte bleiben nach einem Reset nicht erhalten.

William and Waximawert verwenden Welli da	1	Minimal- und Maximalwert verwenden	Nein • Ja
---	---	------------------------------------	-----------

4.4. Temperatur Grenzwerte

Aktivieren Sie die benötigten Temperatur-Grenzwerte. Die Menüs für die weitere Einstellung der Grenzwerte werden daraufhin angezeigt.

Grenzwert 1/2/3 verwenden	Ja • <u>Nein</u>
---------------------------	------------------

4.4.1. Grenzwert 1, 2, 3

Grenzwert

Stellen Sie ein, in welchen Fällen per Objekt empfangenen **Grenzwerte und Verzögerungszeiten** erhalten bleiben sollen. Der Parameter wird nur berücksichtigt, wenn die Einstellung per Objekt weiter unten aktiviert ist. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Der Grenzwert kann per Parameter direkt im Applikationsprogramm eingestellt oder per Kommunikationsobjekt über den Bus vorgegeben werden.

Grenzwertvorgabe per Parameter:

Stellen Sie Grenzwert und Hysterese direkt ein.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Grenzwert in 0,1°C	-300 800; <u>200</u>

Grenzwertvorgabe per Kommunikationsobjekt:

Geben Sie vor, wie der Grenzwert vom Bus empfangen wird. Grundsätzlich kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Bei der Erstinbetriebnahme muss ein Grenzwert vorgegeben werden, der bis zur 1. Kommunikation eines neuen Grenzwerts gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Grenzwert verwendet werden. Grundsätzlich wird ein Temperaturbereich vorgegeben in dem der Grenzwert verändert werden kann (Objektwertbegrenzung).

Ein gesetzter Grenzwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Der zuletzt kommunizierte Wert soll erhalten bleiben	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start Grenzwert in 0,1°C gültig bis zur 1. Kommunikation	-300 800; <u>200</u>
Objektwertbegrenzung (min) in 0,1°C	<u>-300</u> 800
Objektwertbegrenzung (max) in 0,1°C	-300 <u>800</u>
Art der Grenzwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite (bei Veränderung durch Anhebung / Absen- kung)	0,1 °C • • 5°C, <u>1°C</u>

Unabhängig von der Art der Grenzwertvorgabe stellen Sie die Hysterese ein.

Hysterese in % des Grenzwerts 0 50; 20
--

Schaltausgang

Stellen Sie das Verhalten des Schaltausgangs bei Grenzwert-Über-/Unterschreitung ein. Die Schaltverzögerung des Ausgangs kann über Objekte oder direkt als Parameter eingestellt werden.

Ausgang ist bei (GW = Grenzwert)	• GW über = 1 GW - Hyst. unter = 0 • GW über = 0 GW - Hyst. unter = 1 • GW unter = 1 GW + Hyst. über = 0 • GW unter = 0 GW + Hyst. über = 1
Verzögerung über Objekte einstellbar (in Sekunden)	<u>Nein</u> • Ja
Schaltverzögerung von 0 auf 1 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltverzögerung von 1 auf 0 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Schaltausgang sendet	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Zyklus (nur wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

Sperre

Der Schaltausgang kann durch ein Objekt gesperrt werden.

Sperrung des Schaltausgangs verwenden	Nein • Ja
---------------------------------------	-----------

Wenn die Sperre aktiviert ist, machen Sie hier Vorgaben für das Verhalten des Ausgangs während der Sperre.

Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigeben Bei Wert 0: sperren Bei Wert 1: freigeben	
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1	
Verhalten des Schaltausgangs		
Beim Sperren	kein Telegramm senden 0 senden 1 senden	
Beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	[Abhängig von Einstellung bei "Schaltausgang sendet"]	

Das Verhalten des Schaltausgangs beim Freigeben ist abhängig vom Wert des Parameters "Schaltausgang sendet" (siehe "Schaltausgang")

Schaltausgang sendet bei Änderung	kein Telegramm senden Status des Schaltausgangs senden
Schaltausgang sendet bei Änderung auf 1	 • kein Telegramm senden • wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0	 kein Telegramm senden wenn Schaltausgang = 0 → sende 0
Schaltausgang sendet bei Änderung und zyklisch	sende Status des Schaltausgangs
Schaltausgang sendet bei Änderung auf 1 und zyklisch	wenn Schaltausgang = 1 →sende 1
Schaltausgang sendet bei Änderung auf 0 und zyklisch	wenn Schaltausgang = 0 →sende 0

4.5. Temperatur-PI-Regelung

Aktivieren Sie die Regelung, wenn Sie sie verwenden möchten.

Regelung verwenden	<u>Nein</u> • Ja
--------------------	------------------

Regelung Allgemein

Stellen Sie ein, in welchen Fällen die per Objekt empfangenen **Sollwerte und die Verlängerungszeit** erhalten bleiben sollen. Der Parameter wird nur berücksichtigt, wenn die Einstellung per Objekt weiter unten aktiviert ist. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Zur bedarfgerechten Regelung der Raumtemperatur werden die Modi Komfort, Standby, Eco und Gebäudeschutz verwendet.

Komfort bei Anwesenheit,

Standby bei Abwesenheit,

Eco als Nachtmodus und

Frost-/Hitzeschutz (Gebäudeschutz) z. B. bei geöffnetem Fenster.

In den Einstellungen des Temperaturreglers werden die Solltemperaturen für die einzelnen Modi festgelegt. Über Objekte wird bestimmt, welcher Modus ausgeführt werden soll. Ein Moduswechsel kann manuell oder automatisch (z. B. durch Zeitschaltuhr, Fensterkontakt) ausgelöst werden.

Der **Modus** kann über zwei 8 Bit-Objekte umgeschaltet werden, die unterschiedliche Priorität haben. Objekte

- "... HVAC Modus (Prio 2)" für Umschaltung im Alltagsbetrieb und
- "... HVAC Modus (Prio 1)" für zentrale Umschaltung mit höherer Priorität.

Die Objekte sind wie folgt kodiert:

0 = Auto

1 = Komfort

2 = Standby

3 = Eco

4 = Gebäudeschutz

Alternativ können drei Objekte verwendet werden, wobei dann ein Objekt zwischen Eco- und Standby-Modus umschaltet und die beiden anderen den Komfortmodus bzw. den Frost-/Hitzeschutzmodus aktivieren. Das Komfort-Objekt blockiert dabei das Eco/ Standby-Objekt, die höchste Priorität hat das Frost-/Hitzeschutz-Objekt. Objekte

- "... Modus (1: Eco, 0: Standby)",
- "... Modus Komfort Aktivierung" und
- "... Modus Frost-/Hitzeschutz Aktivierung"

Modusumschaltung über	• zwei 8 Bit-Objekte (HVAC-Modi)
	drei 1 Bit-Objekte

Legen Sie fest, welcher **Modus nach einem Reset** (z. B. Stromausfall, Reset der Linie über den Bus) ausgeführt werden soll (Default).

Konfigurieren Sie dann die Sperrung der Temperaturregelung durch das Sperrobjekt.

Modus nach Reset	Komfort
	• Standby
	• Eco
	Gebäudeschutz

, ,	• 1 = Sperren 0 = Freigeben • 0 = Sperren 1 = Freigeben
Wert des Sperrobjekts nach Reset	<u>0</u> • 1

Stellen Sie ein, wann die aktuellen **Stellgrößen** der Regelung auf den Bus **gesendet** werden. Das zyklische Senden bietet mehr Sicherheit falls ein Telegramm nicht beim Empfänger ankommt. Auch eine zyklische Überwachung durch den Aktor kann damit eingerichtet werden.

	• <u>bei Änderung</u> • bei Änderung und zyklisch
ab Änderung von (in% absolut)	110; <u>2</u>
Zyklus (wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Das **Statusobjekt** gibt den aktuellen Zustand der Stellgröße aus (0% = AUS, >0% = EIN) und kann beispielsweise zur Visualisierung genutzt werden oder um die Heizungspumpe abzuschalten, sobald keine Heizung mehr läuft.

Statusobjekte senden	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Zyklus (wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Definieren Sie dann die **Art der Regelung**. Heizungen und/oder Kühlungen können in zwei Stufen gesteuert werden.

Art der Regelung	Einstufen Heizung Zweistufen Heizung Einstufen Kühlung
	Zweistufen Kühlung Einstufen Heizung + Einstufen Kühlung
	Zweistufen Heizung + Einstufen KühlungZweistufen Heizung + Zweistufen Kühlung

Sollwert Allgemein

Sollwerte können entweder für jeden Modus separat vorgegeben werden oder der Komfortsollwert wird als Basiswert verwendet.

Wird die Regelung zum Heizen *und* Kühlen verwendet, kann zusätzlich die Einstellung "separat mit Umschaltobjekt" gewählt werden. Systeme, die im Sommer als Kühlung und im Winter als Heizung verwendet werden, können so umgestellt werden.

Bei Verwendung des Basiswerts wird für die anderen Modi nur die Abweichung vom Komfortsollwert angegeben (z. B. 2°C weniger für Standby-Modus).

Geänderte Sollwerte nach Moduswechsel erhalten	
Einstellung der Sollwerte	separaten mit Umschaltobjekt separaten ohne Umschaltobjekt mit Komfortsollwert als Basis

Die **Schrittweite** für die Sollwertveränderung wird vorgegeben. Ob die Änderung nur temporär aktiv bleibt (nicht speichern) oder aber auch nach Spannungswiederkehr (und Programmierung) gespeichert bleiben, wird im ersten Abschnitt von "Regelung allgemein" festgelegt. Dies gilt auch für eine Komfortverlängerung.

Schrittweite für Sollwertänderungen (in 0,1°C)	1 50; <u>10</u>
Speicherung von Sollwert(en)	nicht nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung

Aus dem Eco-Modus, also Nachtbetrieb, kann der Regler über die Komfortverlängerung auf Komfortbetrieb geschaltet werden. So kann der Komfort-Sollwert länger beibehalten werden, wenn beispielsweise Gäste da sind. Die Dauer dieser Komfort-Verlängerungszeit wird vorgegeben. Nach Ablauf der Komfort-Verlängerungszeit schaltet die Regelung wieder in den Eco-Modus.

Komfort-Verlängerungszeit in Sekunden	136000; <u>3600</u>
(nur im Eco-Modus aktivierbar)	

Sollwert Komfort

Der Komfort-Modus wird in der Regel für Tagbetrieb bei Anwesenheit verwendet. Für den Komfort-Sollwert wird ein Startwert definiert und ein Temperaturbereich, in dem der Sollwert verändert werden kann.

Startsollwert Heizen/Kühlen (in 0,1°C)	-300800; <u>210</u>
gültig bis zur 1. Kommunikation	
(nicht bei Speicherung des Sollwerts nach	
Programmierung)	

Wenn Sollwerte separat eingestellt werden:

Min. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>160</u>
Max. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>280</u>

Wenn der Komfortsollwert als Basis verwendet wird:

Wenn der Komfortsollwert als Basis verwendet wird, wird die Anhebung/Absenkung dieses Werts angegeben.

Minimaler Basissollwert (in 0,1°C)	-300800; <u>160</u>
Maximaler Basissollwert (in 0,1°C)	-300800; <u>280</u>
Absenkung um bis zu (in 0,1°C)	1100; <u>50</u>
Anhebung um bis zu (in 0,1°C)	1100; <u>50</u>

Wenn der Komfortsollwert als Basis verwendet wird, wird bei der Regelungsart "Heizen *und* Kühlen" eine Totzone vorgegeben, damit keine direkte Umschaltung von Heizen zu Kühlen erfolgt.

Totzone zwischen Heizen und Kühlen	1100; 50
(wenn geheizt UND gekühlt wird)	_

Sollwert Standby

Der Standby-Modus wird in der Regel für Tagbetrieb bei Abwesenheit verwendet.

Wenn Sollwerte separat eingestellt werden:

Es wird ein Startsollwert definiert und ein Temperaturbereich, in dem der Sollwert verändert werden kann.

Startsollwert Heizen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>180</u>
Startsollwert Kühlen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>240</u>
Min. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>160</u>
Max. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>280</u>

Wenn der Komfortsollwert als Basis verwendet wird:

Wenn der Komfortsollwert als Basis verwendet wird, wird die Anhebung/Absenkung dieses Werts angegeben.

Absenkung Heizsollwert (in 0,1°C) (bei Heizung)	0200; <u>30</u>
Anhebung Kühlsollwert (in 0,1°C) (bei Kühlung)	0200; <u>30</u>

Sollwert Eco

Der Eco-Modus wird in der Regel für den Nachtbetrieb verwendet.

Wenn Sollwerte separat eingestellt werden:

Es wird ein Startsollwert definiert und ein Temperaturbereich, in dem der Sollwert verändert werden kann.

Startsollwert Heizen (in 0,1°C)	-300800; <u>160</u>
gültig bis zur 1. Kommunikation	

Startsollwert Kühlen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>280</u>
Min. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>160</u>
Max. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>280</u>

Wenn der Komfortsollwert als Basis verwendet wird:

Wenn der Komfortsollwert als Basis verwendet wird, wird die Anhebung/Absenkung dieses Werts angegeben.

Absenkung Heizsollwert (in 0,1°C) (bei Heizung)	0200; <u>50</u>
Anhebung Kühlsollwert (in 0,1°C) (bei Kühlung)	0200; <u>60</u>

Sollwerte Frost-/Hitzeschutz (Gebäudeschutz)

Der Modus Gebäudeschutz wird z. B. verwendet, so lange Fenster zum Lüften geöffnet sind. Es werden Sollwerte für den Frostschutz (Heizung) und Hitzeschutz (Kühlung) vorgegeben, die von außen nicht verändert werden können (kein Zugriff über Bedienteile usw.). Der Modus Gebäudeschutz kann verzögert aktiviert werden, wodurch das Gebäude noch verlassen werden kann, bevor die Regelung in den Frost-/Hitzeschutzmodus schaltet.

Sollwert Frostschutz (in 0,1°C)	-300800; <u>70</u>
Aktivierungsverzögerung	keine • 5 s • • <u>5 min</u> • • 2 h
Sollwert Hitzeschutz (in 0,1°C)	-300800; <u>350</u>
Aktivierungsverzögerung	keine • 5 s • • <u>5 min</u> • • 2 h

Stellgrößen Allgemein

Diese Einstellung erscheint nur bei den Regelungsarten "Heizen und Kühlen". Hier kann festgelegt werden, ob für die Heizung und für die Kühlung eine gemeinsame Stellgröße verwendet werden soll. Wenn die 2. Stufe eine gemeinsame Stellgröße hat, dann wird auch die Regelungsart der 2. Stufe hier festgelegt.

Für Heizen und Kühlen werden	getrennte Stellgrößen verwendet gemeinsame Stellgrößen verwendet bei Stufe 1 gemeinsame Stellgrößen verwendet bei Stufe 2 gemeinsame Stellgrößen verwendet bei Stufe 1+2
Stellgröße für 4/6 Wegeventil verwenden (nur bei gemeinsamer Stellgröße bei Stufe 1)	<u>Nein</u> • Ja
Regelungsart (nur bei Stufe 2)	• 2-Punkt-Regelung • PI-Regelung
Stellgröße der 2. Stufe ist ein (nur bei Stufe 2 mit 2-Punkt-Regelung)	• 1 Bit-Objekt • 8 Bit-Objekt

Bei Verwendung der Stellgröße für ein 4/6 Wegeventil gilt: 0%...100% Heizen = 66%...100% Stellgröße AUS = 50% Stellgröße 0%...100% Kühlen = 33%...0% Stellgröße

4.5.1. Heizregelung Stufe 1/2

lst eine Heizregelung konfiguriert, erscheinen ein bzw. zwei Einstellungsabschnitte für die Heizungs-Stufen.

In der 1. Stufe wird die Heizung durch eine PI-Regelung gesteuert, bei der wahlweise Reglerparameter eingegeben oder vorgegebene Anwendungen gewählt werden können.

In der 2. Stufe (also nur bei Zweistufen-Heizung) wird die Heizung durch eine PI- oder eine 2-Punkt-Regelung gesteuert.

In der Stufe 2 muss außerdem die Sollwertdifferenz zwischen beiden Stufen vorgegeben werden, d. h. ab welcher Sollwertunterschreitung die 2. Stufe zugeschaltet wird.

Sollwertdifferenz zwischen 1. und 2. Stufe (in 0,1°C) (bei Stufe 2)	0100; <u>40</u>
Regelungsart (bei Stufe 2, keine gemeinsamen Stellgrö- ßen)	2-Punkt-Regelung PI-Regelung
Stellgröße ist ein (bei Stufe 2 mit 2-Punkt-Regelung, keine gemeinsamen Stellgrößen)	• 1 Bit-Objekt • 8 Bit-Objekt

PI-Regelung mit Reglerparametern:

Diese Einstellung erlaubt es, die Parameter für die PI-Regelung individuell einzugeben.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter
	vorgegebene Anwendungen

Geben Sie vor, bei welcher Abweichung vom Sollwert die maximale Stellgröße erreicht wird, d. h. ab wann die maximale Heizleistung verwendet wird.

Die Nachstellzeit gibt an, wie schnell die Regelung auf Sollwertabweichungen reagiert. Bei einer kleinen Nachstellzeit reagiert die Regelung mit einem schnellen Anstieg der Stellgröße. Bei einer großen Nachstellzeit reagiert die Regelung sanfter und benötigt länger bis die für die Sollwertabweichung erforderliche Stellgröße erreicht ist.

Hier sollte eine an das Heizsystem angepasste Zeit eingestellt werden (Herstellerangaben beachten).

Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in °C)	1 <u>5</u>
Nachstellzeit (in Min.)	1255; <u>30</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Stellen Sie hier einen Wert größer 0 (= AUS) ein, um eine Grundwärme zu erhalten, z. B. bei Fußbodenheizungen.

Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

PI-Regelung mit vorgegebener Anwendung:

Diese Einstellung stellt feste Parameter für häufig Anwendungen bereit.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter vorgegebene Anwendungen
Anwendung	WarmwasserheizungFußbodenheizungGebläsekonvektorElektroheizung
Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in °C)	Warmwasserheizung: 5 Fußbodenheizung: 5 Gebläsekonvektor: 4 Elektroheizung: 4
Nachstellzeit (in Min.)	Warmwasserheizung: 150 Fußbodenheizung: 240 Gebläsekonvektor: 90 Elektroheizung: 100

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Stellen Sie hiereinen Wert größer 0 (= AUS) ein, um eine Grundwärme zu erhalten, z. B. bei Fußbodenheizungen.

Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

2-Punkt-Regelung (nur Stufe 2):

Die 2-Punkt-Regelung wird für Systeme verwendet, die nur EIN und AUS geschaltet werden.

Regelungsart	• 2-Punkt-Regelung
(wird bei gemeinsamen Stellg	rößen weiter
oben festgelegt)	

Geben Sie die Hysterese vor, die verhindert, dass bei Temperaturen im Grenzbereich häufig an- und ausgeschaltet wird.

Hysterese (in 0,1°C)	0100; <u>20</u>

Wenn getrennte Stellgrößen verwendet werden, dann wählen Sie, ob die Stellgröße der 2. Stufe ein 1 Bit-Objekt (Ein/Aus) oder ein 8 Bit-Objekt (Ein mit Prozent-Wert/Aus) ist.

Stellgröße ist ein	• 1 Bit-Objekt • 8 Bit-Objekt
Wert (in %) (bei 8 Bit-Objekt)	0 <u>100</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Stellen Sie hier einen Wert größer 0 (= AUS) ein, um eine Grundwärme zu erhalten, z. B. bei Fußbodenheizungen. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) nur wenn ein Wert gesendet wird	<u>0</u> 100

4.5.2. Kühlregelung Stufe 1/2

lst eine Kühlregelung konfiguriert, erscheinen ein bzw. zwei Einstellungsabschnitte für die Kühlungs-Stufen.

In der 1. Stufe wird die Kühlung durch eine PI-Regelung gesteuert, bei der wahlweise Reglerparameter eingegeben oder vorgegebene Anwendungen gewählt werden können.

In der 2. Stufe (also nur bei Zweistufen-Kühlung) wird die Kühlung durch eine PI- oder eine 2-Punkt-Regelung gesteuert.

In der Stufe 2 muss außerdem die Sollwertdifferenz zwischen beiden Stufen vorgegeben werden, d. h. ab welcher Sollwertüberschreitung die 2. Stufe zugeschaltet wird.

Sollwertdifferenz zwischen 1. und 2. Stufe (in 0,1°C) (bei Stufe 2)	0100; <u>40</u>
Regelungsart (bei Stufe 2, keine gemeinsamen Stellgrö- ßen)	2-Punkt-Regelung PI-Regelung
Stellgröße ist ein (bei Stufe 2 mit 2-Punkt-Regelung, keine gemeinsamen Stellgrößen)	• 1 Bit-Objekt • 8 Bit-Objekt

PI-Regelung mit Reglerparametern:

Diese Einstellung erlaubt es, die Parameter für die PI-Regelung individuell einzugeben.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter
	vorgegebene Anwendungen

Geben Sie vor, bei welcher Abweichung vom Sollwert die maximale Stellgröße erreicht wird, d. h. wann die maximale Kühlleistung verwendet wird.

Die Nachstellzeit gibt an, wie schnell die Regelung auf Sollwertabweichungen reagiert. Bei einer kleinen Nachstellzeit reagiert die Regelung mit einem schnellen Anstieg der Stellgröße. Bei einer großen Nachstellzeit reagiert die Regelung sanfter und benötigt länger bis die für die Sollwertabweichung erforderliche Stellgröße erreicht ist. Hier sollte eine an das Kühlsystem angepasste Zeit eingestellt werden (Herstellerangaben beachten).

Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in °C)	1 <u>5</u>
Nachstellzeit (in Min.)	1255; <u>30</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	<u>nicht gesendet werden</u> einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

PI-Regelung mit vorgegebener Anwendung:

Diese Einstellung stellt feste Parameter für eine Kühldecke bereit.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter vorgegebene Anwendungen
Anwendung	Kühldecke
Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in °C)	Kühldecke: 5
Nachstellzeit (in Min.)	Kühldecke: 30

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

2-Punkt-Regelung (nur Stufe 2):

Die 2-Punkt-Regelung wird für System verwendet, die nur EIN und AUS geschaltet werden.

Regelungsart	• 2-Punkt-Regelung
wird bei gemeinsamen Stellgrößen weiter	
oben festgelegt	

Geben Sie die Hysterese vor, die verhindert, dass bei Temperaturen im Grenzbereich häufig an- und ausgeschaltet wird.

Hysterese (in 0,1°C)	0100; 20

Wenn getrennte Stellgrößen verwendet werden, dann wählen Sie, ob die Stellgröße der 2. Stufe ein 1 Bit-Objekt (Ein/Aus) oder ein 8 Bit-Objekt (Ein mit Prozent-Wert/Aus) ist.

Stellgröße ist ein	• 1 Bit-Objekt • 8 Bit-Objekt
Wert (in %) (bei 8 Bit-Objekt)	0 <u>100</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

4.6. Stellgrößenvergleicher

Durch die integrierten Stellgrößenvergleicher können Maximal-, Minimal- und Mittelwerte ausgegeben werden.

vergiololiei 1/2 verwenden Neili - 5a	Vergleicher 1/2 verwenden	Nein • Ja
---	---------------------------	-----------

4.6.1. Stellgrößenvergleicher 1/2

Legen Sie fest, was der Stellgrößenvergleicher ausgeben soll und aktivieren Sie die zu verwendenden Eingangsobjekte. Zudem können Sendeverhalten und Sperre eingestellt werden.

	Maximalwert Minimalwert Mittelwert
Eingang 1 / 2 / 3 / 4 / 5 verwenden	Nein • Ja

Ausgang sendet	bei Änderung des Ausgangs bei Änderung des Ausgangs und zyklisch bei Empfang eines Eingangsobjektes bei Empfang eines Eingangsobjektes und zyklisch
Ab Änderung von (wenn bei Änderung gesendet wird)	<u>1%</u> • 2% • 5% • 10% • 20% • 25%
Sendezyklus (wenn zyklisch gesendet wird)	5 s • 10 s • 30 s • • <u>5 min</u> • • 2 h
Auswertung des Sperrobjekts	• bei Wert 1: sperren bei Wert 0: freigeben • bei Wert 0: sperren bei Wert 1: freigeben
Wert des Sperrobjekts vor 1. Kommunikation	<u>0</u> • 1
Verhalten des Schaltausgangs	
Beim Sperren	<u>kein Telegramm senden</u> Wert senden
Gesendeter Wert in %	0 100
beim Freigeben sendet Ausgang (mit 2 Sekunden Freigabeverzögerung)	den aktuellen Wert den aktuellen Wert nach Empfang eines Objekts

4.7. Logik

Das Gerät stellt 16 Logikeingänge, vier UND- und vier ODER-Logikgatter zur Verfügung.

Aktivieren Sie die Logikeingänge und weisen Sie Objektwerte bis zur 1. Kommunikation zu.

Logikeingänge verwenden	Ja • <u>Nein</u>
Objektwert vor 1. Kommunikation für	
- Logikeingang 1	<u>0</u> • 1
- Logikeingang	<u>0</u> • 1
- Logikeingang 16	<u>0</u> • 1

Aktivieren Sie die benötigten Logikausgänge.

UND Logik

UND Logik 1	nicht aktiv • aktiv
UND Logik	nicht aktiv • aktiv
UND Logik 4	nicht aktiv • aktiv

ODER Logik

ODER Logik 1	nicht aktiv • aktiv
ODER Logik	nicht aktiv • aktiv

ODER Logik 4	nicht aktiv • aktiv
--------------	---------------------

4.7.1. UND Logik 1-4 und ODER Logik 1-4

Für die UND- und die ODER-Logik stehen die gleichen Einstellungsmöglichkeiten zur Verfügung.

Jeder Logikausgang kann ein 1 Bit- oder zwei 8 Bit-Objekte senden. Legen Sie jeweils fest was der Ausgang sendet bei Logik = 1 und = 0.

1. / 2. / 3. / 4. Eingang	nicht verwenden Logikeingang 116 Logikeingang 116 Logikeingang 116 invertiert sämtliche Schaltereignisse, die das Gerät zur Verfügung stellt (siehe Kapitel Verknüpfungseingänge der UND bzw. ODER Logik)
Ausgangsart	• ein 1 Bit-Objekt • zwei 8 Bit-Objekte

Wenn die **Ausgangsart ein 1 Bit-Objekt** ist, stellen Sie die Ausgangswerte für verschiedenen Zustände ein.

Ausgangswert wenn Logik = 1	<u>1</u> •0
Ausgangswert wenn Logik = 0	1 • <u>0</u>
Ausgangswert wenn Sperre aktiv	1 • <u>0</u>
Ausgangswert wenn Überwachungszeitraum überschritten	1 • <u>0</u>

Wenn die **Ausgangsart zwei 8 Bit-Objekte** sind, stellen Sie Objektart und die Ausgangswerte für verschiedenen Zustände ein.

Objektart	• Wert (0255) • Prozent (0100%) • Winkel (0360°) • Szenenaufruf (0127)
Ausgangswert Objekt A wenn Logik = 1	<u>0</u> 255 / 100% / 360° / 127
Ausgangswert Objekt B wenn Logik = 1	<u>0</u> 255 / 100% / 360° / 127
Ausgangswert Objekt A wenn Logik = 0	<u>0</u> 255 / 100% / 360° / 127
Ausgangswert Objekt B wenn Logik = 0	<u>0</u> 255 / 100% / 360° / 127

Stellen Sie das Sendeverhalten des Ausgangs ein.

Sendeverhalten	 bei Änderung der Logik bei Änderung der Logik auf 1 bei Änderung der Logik auf 0 bei Änderung der Logik und zyklisch bei Änderung der Logik auf 1 und zyklisch bei Änderung der Logik auf 0 und zyklisch bei Änderung der Logik +Objektempfang bei Änderung der Logik +Objektempfang und zyklisch
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • • 2 h

Sperrung

Aktivieren Sie bei Bedarf die Sperre des Logikausgangs und stellen Sie ein, was eine 1 bzw. 0 am Sperreingang bedeutet und was beim Sperren geschieht.

Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigebe Bei Wert 0: sperren Bei Wert 1: freigebe		
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1		
Ausgangsverhalten beim Sperren	 kein Telegramm senden Wert für Logik = 0 senden Wert für Logik = 1 senden 		
beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	• kein Telegramm senden • wenn Logik = 1> sende Wert für 1		

4.7.2. Verknüpfungseingänge der UND Logik

nicht verwenden

Logikeingang 1

Logikeingang 1 invertiert

Logikeingang 2

Logikeingang 2 invertiert

Logikeingang 3

Logikeingang 3 invertiert

Logikeingang 4

Logikeingang 4 invertiert

Logikeingang 5

Logikeingang 5 invertiert

Logikeingang 6

Logikeingang 6 invertiert

Logikeingang 7

Logikeingang 7 invertiert

Logikeingang 8

Logikeingang 8 invertiert

Logikeingang 9

Logikeingang 9 invertiert

Logikeingang 10

Logikeingang 10 invertiert

Logikeingang 11

Logikeingang 11 invertiert

Logikeingang 12

Logikeingang 12 invertiert

Logikeingang 13

Logikeingang 13 invertiert

Logikeingang 14

Logikeingang 14 invertiert

Logikeingang 15

Logikeingang 15 invertiert

Logikeingang 16

Logikeingang 16 invertiert

Temperatursensor Störung =EIN

Temperatursensor Störung = AUS

Schaltausgang 1 Temperatur

Schaltausgang 1 Temperatur invertiert

Schaltausgang 2 Temperatur

Schaltausgang 2 Temperatur invertiert

Schaltausgang 3 Temperatur

Schaltausgang 3 Temperatur invertiert

Temperaturregler Komfort aktiv

Temperaturregler Komfort inaktiv

Temperaturregler Eco aktiv

Temperaturregler Eco inaktiv

Temperaturregler Standby aktiv

Temperaturregler Standby inaktiv

Temperaturregler Frost/Hitze aktiv

Temperaturregler Frost/Hitze inaktiv

Temperaturregler Status Heizung 1

Temperaturregler Status Heizung 1 invertiert

Temperaturregler Status Heizung 2

Temperaturregler Status Heizung 2 invertiert

Temperaturregler Status Kühlung 1

Temperaturregler Status Kühlung 1 invertiert

Temperaturregler Status Kühlung 2

Temperaturregler Status Kühlung 2 invertiert

4.7.3. Verknüpfungseingänge der ODER Logik

Die Verknüpfungseingänge der ODER Logik entsprechen denen der UND Logik. Zusätzlich stehen der ODER Logik die folgenden Eingänge zur Verfügung:

Schaltausgang UND Logik 1

Schaltausgang UND Logik 1 invertiert

Schaltausgang UND Logik 2

Schaltausgang UND Logik 2 invertiert

Schaltausgang UND Logik 3

Schaltausgang UND Logik 3 invertiert Schaltausgang UND Logik 4 Schaltausgang UND Logik 4 invertiert

