
WEINZIERL ENGINEERING GmbH Page 1/42

2013-01-23

WEINZIERL ENGINEERING GmbH

KNX BAOS ObjectServer
Protocol specification for

KNX BAOS Module 820

KNX BAOS Module 822

KNX Serial BAOS 870

WEINZIERL ENGINEERING GmbH
Achatz 3
DE-84508 Burgkirchen a. d. Alz
GERMANY
Tel. +49 (0)8677 / 91 636 - 0
Fax +49 (0)8677 / 91 636 - 19
E-Mail: info@weinzierl.de
Web: www.weinzierl.de

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 2/42
2011-11-23

Document history

Document status Date Editor
Draft 2006-11-23 Y.Kyselytsya
Revision 2007-02-20 Y.Kyselytsya
Update 2007-04-24 Y.Kyselytsya
Add discovery 2007-07-30 Y.Kyselytsya
Add FT1.2 protocol description 2008-10-07 Y.Kyselytsya
Add “programming mode” item 2009-02-24 Y.Kyselytsya
Add GetDatapointDescription2.Req 2010-09-21 Y.Kyselytsya
Update returned error codes 2010-10-20 Y.Kyselytsya
Add FT1.2 protocol timings 2010-10-25 Y.Kyselytsya
Add how to send GroupValueRead 2011-11-23 Th. Weinzierl
Changed address 2013-01-23 St. Matsche
Add BAOS 822 and BAOS 870 on
first page

2013-02-14 St.Matsche

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 3/42
2011-11-23

Contents
1. WHAT IS AN OBJECTSERVER? ... 4

2. COMMUNICATION PROTOCOL 5

2.1. GETSERVERITEM.REQ .. 6

2.2. GETSERVERITEM.RES .. 7

2.3. SETSERVERITEM.REQ .. 8

2.4. SETSERVERITEM.RES ... 9

2.5. GETDATAPOINTDESCRIPTION.REQ .. 10

2.6. GETDATAPOINTDESCRIPTION.RES .. 11

2.7. GETDESCRIPTIONSTRING.REQ .. 13

2.8. GETDESCRIPTIONSTRING.RES .. 14

2.9. GETDATAPOINTVALUE.REQ .. 15

2.10. GETDATAPOINTVALUE.RES ... 16

2.11. DATAPOINTVALUE.IND ... 18

2.12. SETDATAPOINTVALUE.REQ ... 19

2.13. SETDATAPOINTVALUE.RES ... 21

2.14. GETPARAMETERBYTE.REQ ... 22

2.15. GETPARAMETERBYTE.RES ... 23

2.16. GETDATAPOINTDESCRIPTION2.REQ .. 24

2.17. GETDATAPOINTDESCRIPTION2.RES .. 25

3. ENCAPSULATING OF THE OBJECTSERVER PROTOCOL .. 27

3.1. FT1.2 .. 28

3.2. KNXNET/IP .. 29

3.3. TCP/IP .. 30

4. DISCOVERY PROCEDURE .. 31

4.1. KNXNET/IP DISCOVERY ALGORITHM .. 32

APPENDIX A. ITEM IDS 34

APPENDIX B. ERROR CODES 36

APPENDIX C. DATAPOINT VALUE TYPES 37

APPENDIX D. FT1.2 PROTOCOL 38

D.1. COMMUNICATION PROCEDURE .. 39

D.2. FRAME FORMAT .. 40

D.3. TIMINGS ... 41

D.4. COMMUNICATION EXAMPLE ... 42

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 4/42
2011-11-23

1. What is an ObjectServer?

The ObjectServer is a hardware component, which is connected to the
KNX bus and represents it for the client as set of the defined “objects”.
These objects are the server properties (called “items”), KNX datapoints
(known as “communication objects” or as “group objects”) and KNX
configuration parameters (Fig. 1). The communication between server and
clients is based on the ObjectServer protocol that is normally encapsulated
into some other communication protocol (e.g. FT1.2, IP, etc.).

Figure 1. Communication between ObjectServer and Client

Note:

This document describes the version 1 of the BAOS protocol it is used by

• KNX BAOS Module 820

• KNX IP BAOS 770

KNX IP BAOS 771 and 772 use version 2 of the BAOS protocol. The
corresponding specification is available on www.weinzierl.de.

ObjectServer

Client

…

K
N

X

ObjectServer protocol

Items

Datapoints

Parameters

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 5/42
2011-11-23

2. Communication protocol

How is mentioned above, the communication between the server and the
client is based on an ObjectServer protocol and consists of the requests
sent by client and the server responses. To inform the client about the
changes of datapoint’s value an indication is defined, which will be sent
asynchronously from the server to the client. In this version of the protocol
are defined following services:

• GetServerItem.Req/Res

• SetServerItem.Req/Res

• GetDatapointDescription.Req/Res

• GetDescriptionString.Req/Res

• GetDatapointValue.Req/Res

• DatapointValue.Ind

• SetDatapointValue.Req/Res

• GetParameterByte.Req/Res

• GetDatapointDescription2.Req/Res

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 6/42
2011-11-23

2.1. GetServerItem.Req

This request is sent by the client to get one or more server items
(properties). The data packet consists of four bytes:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x01 Subservice code

+2 StartItem 1 ID of first item

+3 NumberOfItems
1

Maximal number of items to
return

As response the server sends to the client the values of the all supported
items from the range [StartItem … StartItem+NumberOfItems-1].

The defined item IDs are specified in appendix A.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 7/42
2011-11-23

2.2. GetServerItem.Res

This response is sent by the server as reaction to the GetServerItem
request. If an error is detected during the request processing server send a
negative response that has following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x81 Subservice code

+2 StartItem 1 Index of bad item

+3 NumberOfItems 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client that has following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x81 Subservice code

+2 StartItem 1 As in request

+3 NumberOfItems
1

Number of items in this
response

+4 First item ID 1 ID of first item

+5 First item data length 1 Data length of first item

+6 First item data 1-255 Data of first item

… … … …

+N-2 Last item ID 1 ID of last item

+N-1 Last item data length 1 Data length of last item

+N Last item data 1-255 Data of last item

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 8/42
2011-11-23

2.3. SetServerItem.Req

This request is sent by the client to set the new value of the server item.

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x02 Subservice code

+2 StartItem 1 ID of first item to set

+3 NumberOfItems
1

Number of items in this
request

+4 First item ID 1 ID of first item

+5 First item data length 1 Data length of first item

+6 First item data 1-255 Data of first item

… … … …

+N-2 Last item ID 1 ID of last item

+N-1 Last item data length 1 Data length of last item

+N Last item data 1-255 Data of last item

The defined item IDs are specified in appendix A.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 9/42
2011-11-23

2.4. SetServerItem.Res

This response is sent by the server as reaction to the SetServerItem
request. If an error is detected during the request processing server send a
negative response that has following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x82 Subservice code

+2 StartItem 1 Index of bad item

+3 NumberOfItems 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client that has following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x82 Subservice code

+2 StartItem 1 As in request

+3 NumberOfItems 1 0x00

+4 ErrorCode 1 0x00

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 10/42
2011-11-23

2.5. GetDatapointDescription.Req

This service is deprecated and should be not used in new
implementations. Please use the “GetDatapointDescription2” service

instead!

This request is sent by the client to get the description(s) of the
datapoint(s). The data packet consists of four bytes:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x03 Subservice code

+2 StartDatapoint 1 ID of first datapoint

+3 NumberOfDatapoints
1

Maximal number of
descriptions to return

As response the server sends to the client the descriptions of the all
datapoints from the range [StartDatapoint …
StartDatapoint+NumberOfDatapoints-1].

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 11/42
2011-11-23

2.6. GetDatapointDescription.Res

This response is sent by the server as reaction to the
GetDatapointDescription request. If an error is detected during the request
processing, the server sends a negative response with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x83 Subservice code

+2 StartDatapoint 1 Index of the bad datapoint

+3 NumberOfDatapoints 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x83 Subservice code

+2 StartDatapoint 1 As in request

+3 NumberOfDatapoints
1

Number of descriptions in
this response

+4 First DP value length
1

Value length of first
datapoint

+5 First DP config flags
1

Configuration flags of first
datapoint

… … … …

+N-1 Last DP value length
1

Value length of last
datapoint

+N Last DP config flags
1

Configuration flags of last
datapoint

The defined lengths of the datapoint value are specified in appendix C.

The coding of the datapoint configuration flags is following:

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 12/42
2011-11-23

Bit Meaning Value Description

1 - 0 Transmit priority

00 System priority
01 Alarm priority
10 High priority
11 Low priority

2
Datapoint
communication

0 Disabled
1 Enabled

3 Read from bus
0 Disabled
1 Enabled

4 Write from bus
0 Disabled
1 Enabled

5 Reserved 0

6
Clients transmit
request

0 Ignored
1 Processed

7
Update on
response

0 Disabled

1 Enabled

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 13/42
2011-11-23

2.7. GetDescriptionString.Req

This request is sent by the client to get the human-readable description
string(s) of the datapoint(s). The data packet consists of four bytes:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x04 Subservice code

+2 StartString 1 ID of first string

+3 NumberOfStrings
1

Maximal number of strings
to return

As response server sends to the client the description strings of the all
datapoints from the range [StartString … StartString+NumberOfStrings-1].

Note: This service is optional and could be not implemented in some
servers.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 14/42
2011-11-23

2.8. GetDescriptionString.Res

This response is sent by the server as reaction to the GetDescriptionString
request. If an error is detected during the processing of the request, the
server sends a negative response with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x84 Subservice code

+2 StartString 1 As in request

+3 NumberOfStrings 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x84 Subservice code

+2 StartString 1 As in request

+3 NumberOfStrings 1
Number of strings in this
response

+4
First DP description
string

StrLen
Description string of first
datapoint

… … … …

+N
Last DP description
string

StrLen
Description string of last
datapoint

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 15/42
2011-11-23

2.9. GetDatapointValue.Req

This request is sent by the client to get the value(s) of the datapoint(s). The
data packet consists of four bytes:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x05 Subservice code

+2 StartDatapoint 1 ID of first datapoint

+3 NumberOfDatapoints
1

Maximal number of
datapoints to return

As response server sends to the client the values of the all datapoints from
the range [StartDatapoint … StartDatapoint+NumberOfDatapoints-1].

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 16/42
2011-11-23

2.10. GetDatapointValue.Res

This response is sent by the server as reaction to the GetDatapointValue
request. If an error is detected during the processing of the request, the
server sends a negative response with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x85 Subservice code

+2 StartDatapoint 1 Index of the bad datapoint

+3 NumberOfDatapoints 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server, it sends a positive
response to the client with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x85 Subservice code

+2 StartDatapoint 1 As in request

+3 NumberOfDatapoints
1

Number of datapoints in
this response

+4 First DP ID 1 ID of first datapoint

+5 First DP state/length
1

State/length byte of first
datapoint

+6 First DP value 1-14 Value of first datapoint

… … … …

+N-2 Last DP ID 1 ID of last datapoint

+N-1 Last DP state/length
1

State/length byte of last
datapoint

+N Last DP value 1-14 Value of last datapoint

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 17/42
2011-11-23

The state/length byte is coded as follow:

Bit Meaning Value Description

7 Update flag
0 Value was not updated
1 Value is updated from bus

6
Read request
flag

0 No read request
1 Read request

(GroupValueRead should be sent)

5 - 4
Transmission
status

00 Idle/OK
01 Idle/error
10 Transmission in progress
11 Transmission request

3-0 Value length 1-14 Length in bytes of datapoint value

The KNX datapoints with the length less than one byte are coded into the
one byte value as follow:

 7 6 5 4 3 2 1 0

1-bit: 0 0 0 0 0 0 0 x

2-bits: 0 0 0 0 0 0 x x

3-bits: 0 0 0 0 0 x x x

4-bits: 0 0 0 0 x x x x

5-bits: 0 0 0 x x x x x

6-bits: 0 0 x x x x x x

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 18/42
2011-11-23

2.11. DatapointValue.Ind

This indication is sent asynchronously by the server if the datapoint(s)
value is changed and has following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0xC1 Subservice code

+2 StartDatapoint 1 ID of first datapoint

+3 NumberOfDatapoints
1

Number of datapoints in
this indication

+4 First DP ID 1 ID of first datapoint

+5 First DP state/length
1

State/length byte of first
datapoint

+6 First DP value 1-14 Value of first datapoint

… … … …

+N-2 Last DP ID 1 ID of last datapoint

+N-1 Last DP state/length
1

State/length byte of last
datapoint

+N Last DP value 1-14 Value of last datapoint

For the coding of the state/length byte see the description of the
GetDatapointValue request.

For the coding of the datapoint value see the description of the
GetDatapointValue response.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 19/42
2011-11-23

2.12. SetDatapointValue.Req

This request is sent by the client to set the new value(s) of the datapoint(s)
or to request/transmit the new value on the bus. It also can be used to clear
the transmission state of the datapoint.

To send a GroupValueRead on the bus, this service has to be used with
the command 0100: Read new value via bus. The response frame
GroupValueResp is received like a GroupValueWrite by all addressed
communication objects if in ETS the flag ‘Update on Response’ per object
is set. Otherwise the response will be ignored by the communication object.
Note that communication objects always respond with their sending
address, which might be different from the group address used in the read
request.

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x06 Subservice code

+2 StartDatapoint
1

 Lowest ID of datapoints to
set

+3 NumberOfDatapoints
1

 Number of datapoints to
set

+4 First DP ID 1 ID of first datapoint

+5 First DP cmd/length
1

Command/length byte of
first datapoint

+6 First DP value 1-14 Value of first datapoint

… … … …

+N-2 Last DP ID 1 ID of last datapoint

+N-1 Last DP cmd/length
1

Command/length byte of
last datapoint

+N Last DP value 1-14 Value of last datapoint

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 20/42
2011-11-23

The command/length byte is coded as follow:

Bit Meaning Value Description

7-4
Datapoint
command

0000 No command
0001 Set new value
0010 Send value on bus
0011 Set new value and send on bus
0100 Read new value via bus
0101 Clear datapoint transmission state
0110 Reserved
…
1111 Reserved

3-0 Value length 1-14 Length in bytes of datapoint value

The datapoint value length must match with the value length, which is
selected in the ETS project database.

The value length “zero” is acceptable and means: “no value in frame”. It
can be used for instance to clear the transmission state of the datapoint or
to send the current datapoint value on the bus or similar.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 21/42
2011-11-23

2.13. SetDatapointValue.Res

This response is sent by the server as reaction to the SetDatapointValue
request. If an error is detected during the processing of the request, the
server sends a negative response with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x86 Subservice code

+2 StartDatapoint 1 Index of the bad datapoint

+3 NumberOfDatapoints 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server, it sends a positive
response to the client with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x86 Subservice code

+2 StartDatapoint 1 As in request

+3 NumberOfDatapoints 1 0x00

+4 ErrorCode 1 0x00

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 22/42
2011-11-23

2.14. GetParameterByte.Req

This request is sent by the client to get the parameter byte(s). A parameter
is free-defined variable of the 8-bits length, which can be set and
programmed by the Engineering Tool Software (ETS). Up to 255 parameter
bytes per server can be defined.

The data packet of the GetParameterByte request consists of four bytes:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x07 Subservice code

+2 StartByte 1 Index of first byte

+3 NumberOfBytes
1

Maximal number of bytes to
return

As response the server sends to the client the values of the all parameters
from the range [StartByte … StartByte+NumberOfBytes-1].

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 23/42
2011-11-23

2.15. GetParameterByte.Res

This response is sent by the server as reaction to the GetParameterByte
request. If an error is detected during the request processing server send a
negative response that has following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x87 Subservice code

+2 StartByte 1 Index of the bad parameter

+3 NumberOfBytes 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client that has following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x87 Subservice code

+2 StartByte 1 As in request

+3 NumberOfBytes 1
Number of bytes in this
response

+4 First byte 1 First parameter byte

… … … …

+N Last byte 1 Last parameter byte

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 24/42
2011-11-23

2.16. GetDatapointDescription2.Req

This service is supported in firmware version ≥ 1.2 and application
version (ETS product database) ≥ 2.0

This request is sent by the client to get the description(s) of the
datapoint(s). The data packet consists of four bytes:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x08 Subservice code

+2 StartDatapoint 1 ID of first datapoint

+3 NumberOfDatapoints
1

Maximal number of
descriptions to return

As response the server sends to the client the descriptions of the all
datapoints from the range
[StartDatapoint … StartDatapoint+NumberOfDatapoints-1].

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 25/42
2011-11-23

2.17. GetDatapointDescription2.Res

This response is sent by the server as reaction to the
GetDatapointDescription2 request. If an error is detected during the
request processing, the server sends a negative response with the
following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x88 Subservice code

+2 StartDatapoint 1 Index of the bad datapoint

+3 NumberOfDatapoints 1 0x00

+4 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client with the following format:

Offset Field Size Value Description

+0 MainService 1 0xF0 Main service code

+1 SubService 1 0x88 Subservice code

+2 StartDatapoint 1 As in request

+3 NumberOfDatapoints
1

Number of descriptions in
this response

+4 First DP value length
1

Value length of first
datapoint

+5 First DP config flags
1

Configuration flags of first
datapoint

+6 First DP type 1 Type of first datapoint

… … … …

+N-2 Last DP value length
1

Value length of last
datapoint

+N-1 Last DP config flags
1

Configuration flags of last
datapoint

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 26/42
2011-11-23

+N Last DP type 1 Type of last datapoint

The defined lengths of the datapoint value are specified in appendix C.

The coding of the datapoint configuration flags is following:

Bit Meaning Value Description

1 - 0 Transmit priority

00 System priority
01 Alarm priority
10 High priority
11 Low priority

2
Datapoint
communication

0 Disabled
1 Enabled

3 Read from bus
0 Disabled
1 Enabled

4 Write from bus
0 Disabled
1 Enabled

5 Reserved 0

6
Clients transmit
request

0 Ignored
1 Processed

7
Update on
response

0 Disabled

1 Enabled

The datapoint type is the number of the corresponding KNX DPT.

Ex.: datapoint type 4 means DPT4.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 27/42
2011-11-23

3. Encapsulating of the ObjectServer protocol

The ObjectServer protocol has been defined to achieve the whole
functionality also on the smallest embedded platforms and on the data
channels with the limited bandwidth. As a result of this fact the protocol is
kept very slim and has no connection management, like the connection
establishment, user authorization, etc. Therefore it is advisable und mostly
advantageous to encapsulate the ObjectServer protocol into some existing
transport protocol to get a powerful solution for the easy access to the KNX
datapoints and directly to the KNX bus.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 28/42
2011-11-23

3.1. FT1.2

The encapsulating of the ObjectServer protocol into the FT1.2 (known also
as PEI type 10) protocol is simple and consists in the integration of the
ObjectServer protocol frames into the FT1.2 frames as is shown in figure 2.

Figure 2. Integration of the ObjectServer message into the FT1.2 frame

The short description of the FT1.2 protocol can be found in appendix D.

S L L S C E … … … … ...

FT1.2 header ObjectServer message FT1.2 tail

C 0xF0

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 29/42
2011-11-23

3.2. KNXnet/IP

The clients that communicate over the KNXnet/IP protocol with the
ObjectServer should use the “Core” services of the KNXnet/IP protocol to
discovery the servers, to get the list of the supported services and to
manage the connection. If the ObjectServer protocol is supported by the
KNXnet/IP server, a service family with the ID=0xF0 is present in the
device information block (DIB) “supported service families”. The same ID
(0xF0) should be used by the client to set the “connection type” field of the
connect request.

The ObjectServer communication procedure is like for the tunneling
connection of the KNXnet/IP protocols (see the chapter 3.8.4 of the KNX
specification for the details). The communication partners send the
requests (ServiceType=0xF080) each other, which will be acknowledge
(ServiceType=0xF081) by the opposite side. Each request includes the
ObjectServer message (figure 3).

Figure 3. Integration of the ObjectServer message into the KNXnet/IP
frame

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 30/42
2011-11-23

3.3. TCP/IP

The TCP/IP provides the whole required functionality from connection
management and maintenance to the data integrity. Therefore it is no
auxiliary services or data should be implemented by the ObjectServer. The
encapsulating of the ObjectServer protocol into the TCP/IP is simple and
consists in the integration of the ObjectServer protocol frames as the TCP
data.

Before the client is able to send the requests to the ObjectServer he must
establish a TCP/IP connection to the IP address and the TCP port of
ObjectServer.

The default value for the ObjectServer port is 12004 (decimal).

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 31/42
2011-11-23

4. Discovery procedure

This chapter describes the possibilities to find the installed ObjectServers
in the local network. This allows the clients to find and to select
automatically a definite ObjectServer for the communication, alternatively
to the manual input from the user. Currently only one discovery procedure
is supported, which is based on the KNXnet/IP discovery algorithm. The
next chapter describes it briefly. For the full description of the KNXnet/IP
discovery algorithm please refer to the KNX handbook Volume 3.8.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 32/42
2011-11-23

4.1. KNXnet/IP discovery algorithm

The KNXnet/IP discovery procedure works in the way showed on the figure
4. The client, which is looking for the installed ObjectServers, sends a
search request via the multicast on the predefined multicast address
224.0.23.12 and port 3671 (decimal). The ObjectServers sends back a
search response with the device information block (DIB), which contains
among other things the information about the support of the ObjectServer
protocol.

Figure 4. KNXnet/IP discovery

The search request has the length of 14 bytes and its format is presented
on figure 5. Most fields are fixed, the client should fill only the fields “IP
address” and “IP port”. These fields are used by the ObjectServer as
destination IP address and port for the search response. For fields, which
are longer than one byte, the big-endian format is applied.

Figure 5. Structure of the Search.Req packet

The search response from the ObjectServer has in the version 1.0 of the
protocol the length of 84 bytes and its format is presented on figure 6. The

O
bj

ec
tS

er
ve

r
#1

Client #1

O
bj

ec
tS

er
ve

r
#N

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 33/42
2011-11-23

support of the ObjectServer protocol by the device is indicated through the
existence of the manufacturer DIB at the offset +76 bytes in the packet.
This manufacturer DIB has the length of 8 bytes.

Figure 6. Structure of the Search.Res packet

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 34/42
2011-11-23

Appendix A. Item IDs

ID Item
Size in
bytes

Ac-
cess

Firm -
ware

1 Hardware type
Can be used to identify the hardware type. Coding is
manufacturer specific.
It is mapped to property PID_HARDWARE_TYPE in
device object.

6 R 1.0

2 Hardware version
Version of the ObjectServer hardware
Coding Ex.: 0x10 = Version 1.0

1 R 1.0

3 Firmware version
Version of the ObjectServer firmware
Coding Ex.: 0x10 = Version 1.0

1 R 1.0

4 KNX manufacturer code DEV
KNX manufacturer code of the device, not modified by
ETS.
It is mapped to property PID_MANUFACTURER_ID in
device object.

2 R 1.0

5 KNX manufacturer code APP
KNX manufacturer code loaded by ETS.
It is mapped to bytes 0 and 1 of property
PID_APPLICATION_VER in application object.

2 R 1.0

6 Application ID (ETS)
ID of application loaded by ETS.
It is mapped to bytes 2 and 3 of property
PID_APPLICATION_VER in application object.

2 R 1.0

7 Application version (ETS)
Version of application loaded by ETS.
It is mapped to byte 4 of property
PID_APPLICATION_VER in application object.

1 R 1.0

8 Serial number
Serial number of device.
It is mapped to property PID_SERIAL_NUMBER in
device object.

6 R 1.0

9 Time since reset [ms]

4 R 1.0

10 Bus connection state
Values: “0” – disconnected
“1” – connected

1 R 1.0

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 35/42
2011-11-23

11 Maximal buffer size

2 R 1.0

12 Length of description string

2 R 1.0

13 Baudrate
Values: “0” – unknown
“1” – 19200
“2” – 115200

1 RW 1.0

14 Current buffer size

2 RW 1.0

15 Programming mode
Values (bit 0): “0” – not active
“1” – active

1 RW 1.1

Attention: For values, which are longer than one byte, the big-endian
format is applied.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 36/42
2011-11-23

Appendix B. Error codes

Error code Description

0 No error

1 Internal error

2 No item found

3 Buffer is too small

4 Item is not writeable

5 Service is not supported

6 Bad service parameter

7 Wrong datapoint ID

8 Bad datapoint command

9 Bad length of the datapoint value

10 Message inconsistent

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 37/42
2011-11-23

Appendix C. Datapoint value types

Type code Value size

0 1 bit

1 2 bits

2 3 bits

3 4 bits

4 5 bits

5 6 bits

6 7 bits

7 1 byte

8 2 bytes

9 3 bytes

10 4 bytes

11 6 bytes

12 8 bytes

13 10 bytes

14 14 bytes

15 variable length

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 38/42
2011-11-23

Appendix D. FT1.2 protocol

The FT1.2 transmission protocol is based on the international standard IEC
870-5-1 and IEC 870-5-2 (DIN 19244). As the hardware interface for the
transmission is the Universal Asynchronous Receiver Transmitter (UART)
used. The frame format for the FT1.2 protocol is fixed to the 8 data bits, 1
stop bit and even parity bit. The default communication speed is 19200
Baud.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 39/42
2011-11-23

D.1. Communication procedure

The typical communication procedure between the host and the
ObjectServer is shown on figure 7.

Figure 7. Typical communication procedure

In chapter D.3 is presented an example of the communication between the
host and the ObjectServer.

Host ObjectServ
er

Reset
request Acknowledgement

Data

Data

Acknowledgement

Acknowledge
ment

…

Data

Acknowledge
ment

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 40/42
2011-11-23

D.2. Frame format

Three frame types are defined by the FT1.2 protocol .

The first one is the positiv acknowledgement frame and consists only one
byte of the value 0xE5.

The second frame type is 4 bytes length and is used for the reset request
and reset indication messages (Fig.8).

Reset.Req: 0x10 0x40 0x40 0x16 Reset.Ind: 0x10 0xC0 0xC0 0x16

Figure 8. Structure of the Reset.Req and Reset.Ind frames

The third frame type is variable length and used for the data messages.
The frame structure is presented on figure 9.

0x68 L L 0x68 CR data C 0x16

Figure 9. Structure of the data message

The both fields L contain the length of the data in this frame.

The field CR specifies the control byte of the frame. Its value is 0x73 for all
odd frames after reset request sent by the host and 0x53 for the even
frames. In the opposite direction (from ObjectServer to host) the control
byte is 0xF3 for the odd frames and 0xD3 for the even frames.

The field C contains the checksum of the frame and is the arithmetic sum
disregarding overflows (modulo 256) over all data and control byte.

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 41/42
2011-11-23

D.3. Timings

Parameter Description Value

LINE_IDLE_TIMEOUT

Maximal time between two characters in a
frame.

Line idle detection time (after timeout is
expired).

~2 ms

EXCHANGE_TIMEOUT
Maximal time between DATA and ACK frames.

Minimal time between two repeated frames.
~30 ms

KNX BAOS ObjectServer protocol

WEINZIERL ENGINEERING GmbH Page 42/42
2011-11-23

D.4. Communication example

Host � ObjectServer: Reset Request

{0x10 0x40 0x40 0x16}

ObjectServer � Client: Acknowledgement

{0xE5}

Host � ObjectServer: GetServerItem.Req (Firmware version)

{0x68 0x05 0x05 0x68 0x73 0xF0 0x01 0x03 0x01 0x68 0x16}

ObjectServer � Client: Acknowledgement

{0xE5}

ObjectServer � Client: GetServerItem.Res (Firmare version)

{0x68 0x08 0x08 0x68 0xF3 0xF0 0x81 0x03 0x01 0x03 0x01 0x10 0x7C
0x16}

Host � ObjectServer: Acknowledgement

{0xE5}

Host � ObjectServer: GetServerItem.Req (Serial number)

{0x68 0x05 0x05 0x68 0x53 0xF0 0x01 0x08 0x01 0x4D 0x16}

ObjectServer � Client: Acknowledgement

{0xE5}

ObjectServer � Client: GetServerItem.Res (Serial number)

{0x68 0x0D 0x0D 0x68 0xD3 0xF0 0x81 0x08 0x01 0x08 0x06 0x00 0xC5
0x08 0x02 0x00 0x00 0x2A 0x16}

Host � ObjectServer: Acknowledgement

{0xE5}

